skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Veccham, Srimukh Prasad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Energy decomposition analysis (EDA) is a useful method to unravel an intermolecular interaction energy into chemically meaningful components such as geometric distortion, frozen interactions, polarization, and charge transfer. A further decomposition of the polarization (POL) and charge transfer (CT) energy into fragment-wise contributions would be useful to understand the significance of each fragment during these two processes. To complement the existing exact pairwise decomposition of the CT term, this work describes formulation and implementation of a non-perturbative polarization analysis that decomposes the POL energy into an exactly fragment-wise additive sum based on the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). These fragment-wise contributions can be further decomposed into chemically intuitive molecular orbital pairs using complementary occupied-virtual pairs (COVP) analysis. A very useful phase convention is established for each COVP such that constructive interference of occupied and virtual corresponds to electron flow into that region, whilst destructive interference corresponds to electron outflow. A range of model problems are used to demonstrate that the polarization process is typically a collective behavior of the electrons that is quite different from the charge transfer process. This provides another reason in addition to their different distance-dependence on fragment separation for separating these two processes in EDA. 
    more » « less
  2. null (Ed.)
    Energy decomposition analysis (EDA) based on absolutely localized molecular orbitals (ALMOs) decomposes the interaction energy between molecules into physically interpretable components like geometry distortion, frozen interactions, polarization, and charge transfer (CT, also sometimes called charge delocalization) interactions. In this work, a numerically exact scheme to decompose the CT interaction energy into pairwise additive terms is introduced for the ALMO-EDA using density functional theory. Unlike perturbative pairwise charge-decomposition analysis, the new approach does not break down for strongly interacting systems, or show significant exchange–correlation functional dependence in the decomposed energy components. Both the energy lowering and the charge flow associated with CT can be decomposed. Complementary occupied–virtual orbital pairs (COVPs) that capture the dominant donor and acceptor CT orbitals are obtained for the new decomposition. It is applied to systems with different types of interactions including DNA base-pairs, borane-ammonia adducts, and transition metal hexacarbonyls. While consistent with most existing understanding of the nature of CT in these systems, the results also reveal some new insights into the origin of trends in donor–acceptor interactions. 
    more » « less